Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Sci ; 20(6): e63, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31775190

RESUMO

We assessed the efficacy of frozen-thawed gelatin-induced osteogenic cell sheet (FT-GCS) compared to that of fresh gelatin-induced osteogenic cell sheet (F-GCS) with adipose-derived mesenchymal stromal cells (Ad-MSCs) used as the control. The bone differentiation capacity of GCS has already been studied. On that basis, the experiment was conducted to determine ease of use of GCS in the clinic. In vitro evaluation of F-GCS showed 3-4 layers with an abundant extracellular matrix (ECM) formation; however, cryopreservation resulted in a reduction of FT-GCS layers to 2-3 layers. Cellular viabilities of F-GCS and FT-GCS did not vary significantly. Moreover, there was no significant difference in mRNA expressions of Runx2, ß-catenin, OPN, and BMP-7 between F-GCS and FT-GCS. In an in vivo experiment, both legs of six dogs with transverse radial fractures were randomly assigned to one of three groups: F-GCS, FT-GCS, or control. Fracture sites were wrapped with the respective cell sheets and fixed with 2.7 mm locking plates and six screws. At 8 weeks after the operations, bone samples were collected and subjected to micro computed tomography and histopathological examination. External volumes of callus as a portion of the total bone volume in control, F-GCS, and FT-GCS groups were 49.6%, 45.3%, and 41.9%, respectively. The histopathological assessment showed that both F-GCS and FT-GCS groups exhibited significantly (p < 0.05) well-organized, mature bone with peripheral cartilage at the fracture site compared to that of the control group. Based on our results, we infer that the cryopreservation process did not significantly affect the osteogenic ability of gelatin-induced cell sheets.


Assuntos
Doenças do Cão/terapia , Consolidação da Fratura , Fraturas Ósseas/veterinária , Células-Tronco Mesenquimais/fisiologia , Osteogênese , Animais , Cães , Fraturas Ósseas/terapia , Congelamento , Gelatina/química , Masculino
2.
Stem Cells Int ; 2019: 8537541, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481975

RESUMO

Owing to the antioxidant and anti-inflammatory functions of hemeoxygenase-1 (HO-1), HO-1-expressing canine adipose-derived mesenchymal stem cells (Ad-MSCs) could be efficacious in treating spinal cord injury (SCI). Further, frozen thawed HO-1 Ad-MSCs could be instantly available as an emergency treatment for SCI. We compared the effects of intravenous treatment with freshly cultured HO-1 Ad-MSCs (HO-1 MSCs), only green fluorescent protein-expressing Ad-MSCs (GFP MSCs), and frozen thawed HO-1 Ad-MSCs (FT-HO-1 MSCs) in dogs with acute SCI. For four weeks, dogs were evaluated for improvement in hind limb locomotion using a canine Basso Beattie Bresnahan (cBBB) score. Upon completion of the study, injured spinal cord segments were harvested and used for western blot and histopathological analyses. All cell types had migrated to the injured spinal cord segment. The group that received HO-1 MSCs showed significant improvement in the cBBB score within four weeks. This group also showed significantly higher expression of NF-M and reduced astrogliosis. There was reduced expression of proinflammatory cytokines (IL6, TNF-α, and IL-1ß) and increased expression of anti-inflammatory markers (IL-10, HO-1) in the HO-1 MSC group. Histopathological assessment revealed decreased fibrosis at the epicenter of the lesion and increased myelination in the HO-1 MSC group. Together, these data suggest that HO-1 MSCs could improve hind limb function by increasing the anti-inflammatory reaction, leading to neural sparing. Further, we found similar results between GFP MSCs and FT-HO-1 MSCs, which suggest that FT-HO-1 MSCs could be used as an emergency treatment for SCI.

3.
Cell Transplant ; 27(7): 1140-1153, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29909686

RESUMO

Abundant expression of proinflammatory cytokines after a spinal cord injury (SCI) creates an inhibitory microenvironment for neuroregeneration. The mesenchymal stem cells help to mitigate the inflammation and improve neural growth and survival. For this purpose, we potentiated the function of adipose-derived mesenchymal stem cells (Ad-MSCs) by transfecting them with brain-derived neurotrophic factor (BDNF) and heme oxygenase-1 (HO-1), through a lentivirus, to produce BDNF overexpressed Ad-MSCs (BDNF-MSCs), and HO-1 overexpressed Ad-MSCs (HO-1-MSCs). Sixteen SCI beagle dogs were randomly assigned into four treatment groups. We injected both HO-1 and BDNF-overexpressed MSCs as a combination group, to selectively control inflammation and induce neuroregeneration in SCI dogs, and compared this with BDNF-MSCs, HO-1-MSCs, and GFP-MSCs injected dogs. The groups were compared in terms of improvement in canine Basso, Beattie, and Bresnahan (cBBB) score during 8 weeks of experimentation. After 8 weeks, spinal cords were harvested and subjected to western blot analysis, immunofluorescent staining, and hematoxylin and eosin (H&E) staining. The combination group showed a significant improvement in hindlimb functions, with a higher BBB score, and a robust increase in neuroregeneration, depicted by a higher expression of Tuj-1, NF-M, and GAP-43 due to a decreased expression of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and an increased expression of interleukin-10 (IL-10) ( P ≤ 0.05). H&E staining showed more reduced intraparenchymal fibrosis in the combination group than in other groups ( P ≤ 0.05). It was thus suggested that the cotransplantation of HO-1 and BDNF-MSCs is more effective in promoting the healing of SCI. HO-1-MSCs reduce inflammation, which favors BDNF-induced neuroregeneration in SCI of dogs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Doenças do Cão/terapia , Heme Oxigenase-1/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Traumatismos da Medula Espinal/veterinária , Transdução Genética/métodos , Animais , Doenças do Cão/patologia , Cães , Masculino , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Regulação para Cima
4.
Tissue Eng Regen Med ; 15(1): 115-124, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603539

RESUMO

Cell sheets technology is being available for fracture healing. This study was performed to clarify bone healing mechanism of undifferentiated (UCS) and osteogenic (OCS) differentiated mesenchymal stromal cell (MSC) sheets in the fracture model of dogs. UCS and OCS were harvested at 10 days of culture. Transverse fractures at the radius of six beagle dogs were assigned into three groups (n = 4 in each group) i.e. UCS, OCS and control. The fractures were fixed with a 2.7 mm locking plate and six screws. Cell sheets were wrapped around the fracture site. Bones were harvested 8 weeks after operation, then scanned by micro-computed tomography (micro-CT) and analyzed histopathologically. The micro-CT revealed different aspects of bone regeneration among the groups. The percentages of external callus volume out of total bone volume in control, UCS, and OCS groups were 42.1, 13.0 and 4.9% (p < 0.05) respectively. However, the percentages of limbs having connectivity of gaps were 25, 12.5 and 75% respectively. In histopathological assessments, OCS group showed well organized and mature woven bone with peripheral cartilage at the fracture site, whereas control group showed cartilage formation without bone maturation or ossification at the fracture site. Meanwhile, fracture site was only filled with fibrous connective tissue without endochondral ossification and bone formation in UCS group. It was suggested that the MSC sheets reduced the quantity of external callus, and OCS induced the primary bone healing.

5.
Cell Transplant ; 26(1): 115-123, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27725063

RESUMO

Osteogenically differentiated cell sheet techniques using mesenchymal stem cells (MSCs) are available to stimulate bone regeneration. The advantage of the cell sheet technique is delivering live cells effectively into the focal region. We developed a novel osteogenic cell sheet technique by adding gelatin to osteogenic cell medium. Gelatin-induced osteogenic cell sheets (GCSs) were compared to conventional osteogenic cell sheets (OCSs). Undifferentiated MSCs (UCs) were used as a control. The morphology of these cell sheets was evaluated microscopically and histologically. The time-dependent cell proliferation rate was estimated by DNA quantification. The expression of osteogenic gene markers and the number of calcium depositions were assessed by quantitative real-time polymerase chain reaction and Alizarin red S (ARS) staining, respectively. GCSs were thicker and stronger than OCSs. GCSs showed a significantly higher cell proliferation rate compared to OCSs (p < 0.05). GCSs exhibited significantly higher upregulation of BMP-7 mRNA compared to OCSs (p < 0.05). Both GCSs and OCSs showed negative ARS reactivity on day 10, but only GCSs showed positive ARS reactivity on day 21. With this technique, we observed active cell proliferation with abundant ECM and upregulation of osteogenic bone markers, and our results suggest that GCSs could be promising for therapeutic applications in bone regeneration.


Assuntos
Gelatina/química , Gelatina/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Proteína Morfogenética Óssea 7/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cães , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Osteogênese/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
6.
J Vet Sci ; 18(3): 377-386, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27586469

RESUMO

Heme oxygenase-1 (HO-1) is a stress-responsive enzyme that modulates the immune response and oxidative stress associated with spinal cord injury (SCI). This study aimed to investigate neuronal regeneration via transplantation of mesenchymal stromal cells (MSCs) overexpressing HO-1. Canine MSCs overexpressing HO-1 were generated by using a lentivirus packaging protocol. Eight beagle dogs with experimentally-induced SCI were divided into GFP-labeled MSC (MSC-GFP) and HO-1-overexpressing MSC (MSC-HO-1) groups. MSCs (1 × 107 cells) were transplanted at 1 week after SCI. Spinal cords were harvested 8 weeks after transplantation, after which histopathological, immunofluorescence, and western blot analyses were performed. The MSC-HO-1 group showed significantly improved functional recovery at 7 weeks after transplantation. Histopathological results showed fibrotic changes and microglial cell infiltration were significantly decreased in the MSC-HO-1 group. Immunohistochemical (IHC) results showed significantly increased expression levels of HO-1 and neuronal markers in the MSC-HO-1 group. Western blot results showed significantly decreased expression of tumor necrosis factor-alpha, interleukin-6, cycloogygenase 2, phosphorylated-signal transducer and activator of transcription 3, and galactosylceramidase in the MSC-HO-1 group, while expression levels of glial fibrillary acidic protein, ß3-tubulin, neurofilament medium, and neuronal nuclear antigen were similar to those observed in IHC results. Our results demonstrate that functional recovery after SCI can be promoted to a greater extent by transplantation of HO-1-overexpressing MSCs than by normal MSCs.


Assuntos
Cães/lesões , Heme Oxigenase-1/metabolismo , Células-Tronco Mesenquimais/enzimologia , Traumatismos da Medula Espinal/veterinária , Animais , Western Blotting/veterinária , Cães/metabolismo , Feminino , Células-Tronco Mesenquimais/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
7.
Turk J Biol ; 41(6): 969-978, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30814861

RESUMO

This characteristics of adipose-derived mesenchymal stem cells (Ad-MSCs) can be selectively enhanced by altering the culture environment. We evaluated the effects of gelatin on Ad-MSCs when used in combination with culture media. Ad-MSCs were initially cultured in 0%, 0.5%, 1%, 2%, and 4% gelatin in Dulbecco's modified Eagle's medium (DMEM) to evaluate cell proliferation. This expression of inflammatory, antiinflammatory, antioxidant, and osteogenic markers was then assessed by rtPCR in Ad-MSCs cultured in 0.5% gelatin in DMEM (GMSCs), and without gelatin (MSCs), for 5 and 10 days. We found that 0.5% gelatin significantly increased the proliferation rate of Ad-MSCs after 24 h of incubation, up until 72 h. GMSCs had upregulated IL-10, VEGF, and HO-1 after 5 and 10 days of incubation, while IL-6 and TNF-α were upregulated after 5 days and then significantly decreased after 10 days of incubation. The osteogenic factors BMP-7, AXIN, and ß-catenin were significantly upregulated in GMSCs after 5 and 10 days. Notably, there was 5- to 8-fold higher expression of BMP-7 in GMSCs than in MSCs. We conclude that culture medium containing 0.5% gelatin enhances the proliferation rate, induces immunosuppression, and activates BMP-7 and the wnt/AXIN/ß-catenin pathway in Ad-MSCs.

8.
Cytotherapy ; 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28029610

RESUMO

BACKGROUND AIMS: The microenvironment of the chronically injured spinal cord does not allow for axonal regeneration due to glial scarring. To ameliorate this, several therapeutic strategies have been used. We investigated whether combined transplantation of chondroitinase ABC (chABC) and mesenchymal stromal cells (MSCs) genetically modified to secrete brain-derived neurotrophic factor (BDNF) with intravenous (IV) administration of MSCs can promote recovery of hindlimb function after chronic spinal cord injury (SCI). METHODS: Canine BDNF-expressing MSCs were generated using a lentivirus packaging protocol. Twelve beagle dogs with experimentally induced chronic SCI were divided into chABC/MSC-green fluorescent protein (GFP), chABC/MSC-BDNF and chABC/MSC-BDNF/IV groups. The MSCs (1 × 107 cells) and chABC were transplanted 3 weeks after SCI in all groups, and IV injection of MSC-GFP (1 × 107 cells) was performed 1 and 2 weeks after MSC transplantation in the chABC/MSC-BDNF/IV group. Spinal cords were harvested 8 weeks after transplantation. RESULTS: The dogs in the chABC/MSC-BDNF included groups had significantly improved functional recovery 8 weeks after transplantation compared with those in the chABC/MSC-GFP group. The animals in the chABC/MSC-BDNF/IV group showed significant improvements in functional recovery at 6, 7 and 8 weeks compared with those in the chABC/MSC-BDNF group. Fibrotic changes were significantly decreased in the chABC/MSC-BDNF/IV group. We also observed significant decreases in the expression levels of tumor necrosis factor-α, interleukin-6, COX-2, glial fibrillary acidic protein and GalC and increased expression levels of BDNF, ß3-tubulin neurofilament medium, and nestin in the chABC/MSC-BDNF/IV group. CONCLUSIONS: We suggest that transplantation of combined chABC and BDNF-expressing MSCs, along with IV injection of MSCs, is the optimal therapy for chronic SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...